
LLNL-PRES-825680
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

https://variorum.readthedocs.io/

Integrating Variorum with System Software and Tools
Module 2 of 2, ECP Lecture Series

13 August 2021 8:30AM-10:00AM PDT
27 August 2021 4:00PM-5:30PM PDT (Repeat)

Tapasya Patki, Aniruddha Marathe,
Stephanie Brink, and Barry Rountree



LLNL-PRES-825680
2https://variorum.readthedocs.io/

§ Recap module 1, revisit PowerStack and JSON API (15 minutes)

§ Job-level power management: GEOPM (35 minutes)

§ System-level power management: 
— SLURM (5 minutes)
— Flux (20 minutes)

§ Application and workflow power management: Kokkos and Caliper (5 minutes)

§ Upcoming features in Variorum (5 minutes)

§ Wrap up (5 minutes)

Module 2 Agenda
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HPC PowerStack: Community Effort on  System-wide, dynamic
power management

https://hpcpowerstack.github.io/

https://hpcpowerstack.github.io/
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• Current industry collaborators: Intel, IBM, AMD, ARM, 
NVIDIA, Cray/HPE, Fujitsu, Altair, ATOS/Bull, and 
PowerAPI community standard

• Multiple academic and research collaborators across 
Europe, Asia, US

• Three working groups established 

• Dynamic power management at all levels, along with 
prioritization of the critical path, application performance 
and throughput

• One of the prototypes developed as part of ECP using 
SLURM, GEOPM, Variorum/msr-safe (close 
collaboration with Intel)

• Additional software with Flux and Variorum underway

PowerStack: Stakeholders

EEHPC-WG’s insight into sites investing in 
Energy- and Power-aware Job Scheduling 
and Resource Management (EPA-JSRM)
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Variorum: Vendor-neutral user space library for power 
management
§ Power management capabilities (and their 

interfaces, domains, latency, capabilities) 
widely differ from one vendor to the next

§ Variorum: Platform-agnostic                                                                                             
vendor-neutral, simple front-facing APIs
— Evolved from libmsr, and designed to target 

several platforms and architectures
— Abstract away tedious and chaotic details          

of low-level knobs
— Implemented in C, with function pointers           

to specific target architecture
— Integration with higher-level power 

management software through JSON

Intel
RAPL

IBM
OPAL

IBM+NVIDIA
Power 

Shifting Ratio

ARM
HWMON

NVIDIA
NVML

AMD
eSMI



LLNL-PRES-825680
6https://variorum.readthedocs.io/

§ Initial v0.1.0 released Nov 11, 2019
— Platforms and microarchitectures supported: 

• Intel: Kaby Lake, Skylake, Broadwell, Haswell, Ivy Bridge, Sandy Bridge
• IBM: Power9

§ Current release (April 2021), v0.4.1:
— Platforms and microarchitectures supported: 

• Nvidia: Volta 
• ARM: Juno
• AMD (under review)

— JSON API to integrate with external tools (e.g., Kokkos, Caliper, GEOPM, Flux)

Variorum Current Support (as of v0.4.1)

https://github.com/llnl/variorum

https://github.com/llnl/variorum
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§ Many of Variorum’s APIs are printing output to stdout for user to parse
— While nice for providing a friendly interface to understanding the hardware-

level metrics, this limits ability for Variorum to provide these metrics to an external tool

§ Added int variorum_get_node_power_json(json_t *) to integrate variorum with other 
tools (e.g., Flux and Kokkos)
— { “hostname”: (string),
— “timestamp”: (int),
— “power_node”: (int),
— “power_cpu_socket_<id>”: (int)
— “power_mem_socket_<id>”: (int)
— “power_gpu_socket_<id>”: (int) }

§ Example: Reporting end-to-end power usage for Kokkos loops

§ Example: Provide power-awareness to Flux scheduling model enabling resources to be 
assigned based on available power

Adding a vendor-neutral JSON interface

JSON object 
keys
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Interfacing Variorum with PowerStack Components
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Interfacing Variorum with PowerStack Components

1

3

4
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Collaborations 

GEOPM Core Team (Intel)
Jonathan Eastep (Project Lead)
Chris Cantalupo (Lead Developer)
Fede Ardanaz
Brad Geltz
Brandon Baker
Mohammad Ali
Siddhartha Jana
Diana Guttman

LLNL Team
Aniruddha Marathe
Tapasya Patki
Stephanie Brink
Barry Rountree

ANL Team
Pete Beckman
Kamil Iskra
Swann Perarnau
Florence Monna
Kazutomo Yoshii
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Agenda: Integration with Runtime Systems

• Part I: Overview of GEOPM (5 minutes)
• High-level design
• User-facing, application-context markup API

• Part II: Plug-ins to extend GEOPM algorithm and platform support (10 minutes)
• Agent: Run-time tuning extension
• PlatformIO: Platform-specific support extension
• Demonstrations (5 minutes)

• Part III: ECP Argo Contributions (10 minutes)
• VariorumIO: Variorum plugin for GEOPM
• NRM integration: Decentralizing job-level power management
• ConductorAgent: Transparent, performance-optimizing configuration selection
• IBM PlatformIO plugin: Port of GEOPM to IBM Power9 platform
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Power-Constrained Performance-Optimization Problem

Problem definition

Given a job-level power constraint and number of nodes, 
how do we optimize application performance?
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GEOPM: Global Extensible Open Power Manager 

• Power-aware runtime system for large-scale HPC systems

• Intel developed a production-grade, scalable, open-source job-level extensible 
runtime and framework

• Extensibility through plug-ins + advanced default functionality

• Limitations of existing runtimes
• Research-based codes addressed specific needs and situations
• Ad-hoc, targeted specific architecture, memory model 
• Suffered scalability issues
• Reliance on empirical data

• Funded through a contract with Argonne National Laboratory
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GEOPM System Model 

Extensible / Plug-in components
Human actors

External components – h/w, s/w, files

Job Monitor

Job  
Optimizer

Power-
aware Job 
Scheduler

User
Applications

Site 
Admin

User

Application
Developer

Per-node
Trace file

System 
Hardware

(sensors,
controls, 

actuators)GEOPM
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Background: System Software Stack for Power Management

• Demand Response, Renewables
Site

• Overprovisioning, Job scheduling
Cluster

• Adaptive runtimes, Power balancing
Job/Application

• Measurement and control (capping)
NodeIn

he
rit

ed
 P

ow
er

 B
ou

nd
s

RMAP,
P-SLURM,
PowSched
GEOPM, 

Conductor,
Kokkos,...

Libmsr,
msr-safe

Dashboards

Software
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Background: System Software Stack for Power Management

• Demand Response, Renewables
Site

• Overprovisioning, Job scheduling
Cluster

• Adaptive runtimes, Power balancing
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§ Critical contribution to the development of HPC 
power-aware system software stack.
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GEOPM Project Goals 

§ Managing power
• Maximizing power efficiency or performance 

under a power cap

§ Managing manufacturing variation
• Power / frequency relationship is non-

uniform across different processors of same 
type

§ Managing workload imbalance
• Divert power to CPUs with more work

§ Managing system jitter
• Divert power to CPUs interrupted or stalled 

by system noise

§ Application profiling
• Report application performance and 

power metrics

§ Runtime application tuning
• Extensible runtime control agent with 

plug-in architecture

§ Integration with MPI
• Automatic integration with MPI 

runtime through PMPI interface

§ Integration with OpenMP
• Automatic integration with OpenMP

through OMPT interface
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GEOPM: Capabilities 

§ Enables analysis and transparent tuning of distributed-memory applications

§ Feedback-guided optimization: Leverages lightweight application profiling

§ Learns application phase patterns: load imbalance across nodes, distinct 

computational phases within a node

§ Uses tuning parameters: processor power limit, core frequency, etc.

§ Built-in optimization algorithms: Static Power capping, energy reduction, 

load balancing, limiting synchronization costs
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GEOPM Components of Interest

GEOPM Core
Hierarchical communication 

+ 
plugin infrastructure

Agent  
PlatformIO

Markup 
API

Application

Endpoint
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GEOPM Components of Interest

GEOPM Core
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+ 
plugin infrastructure

Agent  
PlatformIO
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GEOPM Infrastructure

GEOPM Core
Hierarchical communication 

+ 
power-management plugin

Agent Plugin

PlatformIO Plugin
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GEOPM Infrastructure 

• GEOPM Source repository navigation
• Branches, directories, releases
• GEOPM Wiki

• Build process
• Dependencies
• Build configuration

• GEOPM core infrastructure source
• Overview of important classes
• Plug-in source
• Tutorials and examples
• Test coverage

https://github.com/geopm/geopm
https://geopm.github.io/
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GEOPM: Input/Output Files

Controller

Application Profile PlatformIO

Agent

Report/
Trace

HW Interface
(OS)

GEOPM RuntimePolicy

Signal and control flow
Component creation

GEOPM component
I/O files
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GEOPM Configuration, Build and Launch
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Building an Application with GEOPM

Step 1 : Set the environment
$> module load geopm
$> module load <intel compiler>
$> module load <MPI compiled with intel-c>

Step 2: Link the Application to GEOPM library 
$> mpicc  APP_SRC.c -L$GEOPM_LIB -lgeopm \

-o APP_EXEC \
COMPILER_FLAGS

Example
$> mpicc helloworld.c -L$GEOPM_LIB -lgeopm -o a.out
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Running an Application with GEOPM

Step 3: Generate a policy file
$> geopmagent --agent=AGENT_NAME --policy=INPUT_PARAMS > POLICY_FILE.json

Example:
$> geopmagent --agent=monitor --policy=None > monitor_policy.json

Step 4: Launch application with GEOPM launcher wrapper
$> geopmlaunch srun -n < > -N < >\

--geopm-ctl=process \
--geopm-agent=AGENT_NAME \
--geopm-policy=POLICY_FILE.json \
--geopm-report=REPORT_FILE.txt \
--geopm-trace=TRACE_FILE.csv \
-- APP_EXEC   APP_OPTIONS

Example:
$> geopmlaunch srun -n 4 -N 1 \

--geopm-ctl=process \
--geopm-agent=monitor \
--geopm-policy=monitor_policy.json \
--geopm-report=report.txt \
--geopm-trace=trace.csv  \
-- a.out
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Demo: Running Application with GEOPM

https://www.youtube.com/watch?v=Rr30AprH8Eo&list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz
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GEOPM Components of Interest

GEOPM Core
Hierarchical communication 

+ 
plugin infrastructure

Agent  
PlatformIO

Markup 
API

Application

Endpoint
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GEOPM: Components and Interfaces

§ Application region markup 
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application 
Context

§ Governed policy
— Node-level 

assignment

§ Balanced policy
— Cluster-level 

assignment

Power 
Assignment 

Policies
§ New Agent plugin: 

ConductorAgent

§ New PlatformIO plugin: 
IBM port of GEOPM

Extension 
Interfaces
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GEOPM Markup API: Purpose 

• C interfaces provided in GEOPM that the application links against
• Resemble typical profiler interfaces

• Annotation functions for programmers to provide information about application 
critical path and phases to GEOPM
• Points where bulk synchronizations occur

• Phase changes occur in an MPI rank (i.e. phase entry and exit)

• Hints on whether phases will be compute-,memory-, or communication-intensive

• How much progress each MPI rank has made in the phase (critical path)
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Application Markup API

• Marking up regions of interest
• geopm_prof_region(name, hint, ID)
• geopm_prof_enter(ID)
• geopm_prof_exit(ID)

• Marking region progress
• geopm_prof_progress(ID, %progress)

• Marking a timestep
• geopm_prof_epoch()

MPI/Sequential Region

• Marking up regions of interest
• geopm_tprof_init( num_work_unit)
• geopm_tprof_init_loop(num_thread,

thread ID,
num_iter,
chunk_size)

• Marking region progress
• geopm_tprof_post()

OpenMP Region
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Demo: Using the GEOPM Markup API

https://github.com/geopm/geopm/blob/dev/tutorial/tutorial_4.c
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Part II: Plug-ins to extend GEOPM algorithm 
and platform support 



LLNL-PRES-825680
34https://variorum.readthedocs.io/

GEOPM: Policy plugins

§ Application region markup 
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application 
Context

§ Governed policy
— Node-level 

assignment

§ Balanced policy
— Cluster-level 

assignment

Power 
Assignment 

Policies
§ New Agent plugin: 

ConductorAgent

§ New PlatformIO plugin: 
IBM port of GEOPM

Extension 
Interfaces
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Demo: Using the Default GEOPM Policies

https://www.youtube.com/watch?v=sGyXhRhdSdk&index=5&list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz


LLNL-PRES-825680
36https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication 

+ 
plugin infrastructure

Agent  
PlatformIO

Markup 
API

Application

Endpoint



LLNL-PRES-825680
37https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication 

+ 
plugin infrastructure

Agent  
PlatformIO

Markup 
API

Application

Endpoint

MSR access
control

telemetry
application context

Power mgmt
algorithm
profiling

accounting

Agent

PlatformIO
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GEOPM Plugin Interface 

• Two types of plugins: PlatformIO and Agent plugins
• Example Agent plugins

• MonitorAgent
• BalancerAgent
• GoverningAgent

• Example PlatformIO plugins
• VariorumIOGroup

• Tutorial plugins: ExampleAgent and ExampleIOGroup
• Key methods and code blocks
• Policy description interface

https://github.com/geopm/geopm/tree/dev/tutorial/agent
https://github.com/geopm/geopm/tree/dev/tutorial/iogroup
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VariorumIO: Interfacing GEOPM with Variorum for Vendor Neutrality

§ Motivation: GEOPM uses platform-specific interfaces for signals and controls on 
the target architecture
— A PlatformIO plug-in interfacing with Variorum as the vendor-neutral lower-level API 

§ Components
— VariorumIO plugin to map GEOPM-specific data structures to Variorum
— Low-level API in Variorum to aggregate low-level signals and pass to GEOPM

§ Challenge: Translate vendor-specific into vendor-agnostic signals and controls

§ On-going work:
— Integration with JSON API for capability query
— Evaluation on several platforms
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VariorumIO: Contributions to GEOPM and Variorum 

§ GEOPM: Added VariorumIO

§ Code contributions:

https://github.com/amarathe84/geopm/pull/1

§ Supported version: GEOPM v1.1

§ Variorum: Added low-level API to 
aggregate platform signals and controls

§ Code contributions:

https://github.com/LLNL/variorum/pull/126

§ Supported version: Variorum v0.4.0

https://github.com/amarathe84/geopm/pull/1
https://github.com/LLNL/variorum/pull/126
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ConductorAgent: Selecting Power-Optimizing Configuration

§ Approach: Hardware Overprovisioning with job-level power 
guarantees
— More compute resources than you can power up at once

§ Objective: Optimize job performance under a power constraint

§ Solution: GEOPM – power-constrained performance 
optimization

§ ECP Argo Contributions:
— Augment GEOPM’s algorithm with performance-optimizing application 

configurations: # threads, Frequency, etc.
— Port GEOPM to IBM POWER9 (support for LLNL Sierra)
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Extending GEOPM: Components and Interfaces

§ Application region markup 
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application 
Context

§ Governed policy
— Node-level 

assignment

§ Balanced policy
— Cluster-level 

assignment

Power 
Assignment 

Policies
§ New policy agent plugin: 

ConductorAgent

§ New PlatformIO plugin: 
VariorumIO plugin

Extension 
Interfaces
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Naïve Scheme: Static Power Allocation 

§ Equally distribute and enforce power constraint over all nodes of a job
— Uses Intel’s Running Average Power Limit (RAPL) interface

§ Statically select a configuration under the power constraint
— Configuration: {Number of cores, Frequency/power limit}
— Commonly used: Packed configuration 

• Maximum cores possible on the processor
• Frequency or power limit as the control knob
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Limitations of Static Power Allocation 

1.  Trivial node-level configurations may 
be inefficient

Input: {# cores, frequency/power limit}
Output: {Execution time, power usage}

• Up to 30% slower than the optimal 
configuration

• Needs prohibitively large number of 
runs of the application

CoMD
64 Nodes

50            60            70            80          90
Processor power usage (watts)
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Limitations of Static Power Allocation 

1.  Trivial node-level configurations may 
be inefficient

Input: {# cores, frequency/power limit}
Output: {Execution time, power usage}

• Up to 30% slower than the optimal 
configuration

• Needs prohibitively large number of 
runs of the application

2.  Portion of power left unused with load-
imbalanced applications (up to 40%)

CoMD
64 Nodes

50            60            70            80          90
Processor power usage (watts)
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Conductor: Dynamic Configuration and Power Management 

§ Goals of ConductorAgent
— Speed up computation on the critical path
— Use power-efficient configuration

§ Need to dynamically identify
— Computation region potentially on the critical path
—{execution time, power usage} profile for every computation on every 

processor
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ConductorAgent AlgorithmStart

Explore configurations

1 2 3 n.  .  
. 

MPI  processes
Configurations

k1, k2, ..., kn
k
1

k
2

k
3

k
n

Allgather
{Power, Execution Time}

Step 1: Configuration Exploration
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50           60          70          80        90
Power usage (watts)

Start

Explore configurations

Construct Pareto frontier

Select configuration kOPT

ConductorAgent Algorithm

Step 1: Configuration Exploration
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Start

Explore configurations

Construct Pareto frontier

Select Configuration kOPT

Is computation 
non-critical?

Speed up 
(with unused power)

No

Calculate new 
power 

allocation

Slow down 
(reduce 
power)

Yes
Power Limit: 

70W

ParaDiS: Before power re-allocation

ParaDiS: After power re-allocation

power usage (watts)

50      55       60       65       70

50      55       60        65       70      75 
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  5

   1
0  

 15

power usage (watts)
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ConductorAgent Algorithm

Step 2: Power Re-allocation
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Conductor: Integration into GEOPM with Variorum

§ OMPT class
— Explore {OMP, Pcap} configurations during the exploration phase
— Select power-efficient configuration during regular execution.

§ Profile class
— Report end of timestep (i.e., ‘epoch’), application and system telemetry to enable 

sweep of configuration at runtime.

§ ConfigApp class
— Perform profiling, generate pareto-optimal configurations.

§ ConfigAgent class 
— Share telemetry with PowerBalancer agent, send configuration to OMPT.
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ConductorAgent OMPT Profiler

Init 
Handshake

Shared 
memory
space

GEOPM::
SharedMemory

GEOPM::
SharedMemoryUser

GEOPM Controller Application Process

Time

Initialization: GEOPM, Application Handshake

Initialize control 
and telemetry
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ConductorAgent OMPT Profiler

GEOPM Controller Application Process

Time

Configuration Exploration: Set Configuration, Collect Telemetry

Configuration Exploration

ThreadCnt
PowerCap
RegionID

Power
Time

Set 
Threads

Set Configuration
Set Power Cap

Telemetry
Run Region

Signal 
Timestep

Sweep all 
configurations
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ConductorAgent OMPT Profiler

GEOPM Controller Application Process

Time

Configuration Selection: Pick Power-Efficient Configurations

Configuration Selection

Set Configuration
Set Power Cap ThreadCnt

PowerCap
Set 

ThreadsRun 
Region

Through 
application 
completion
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Conductor Integration: Results

ECP Argo ECP Argo
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Conductor Integration: On-going Efforts

§ Refresh the Conductor plugin to the latest GEOPM code

§ Integration with JSON interface of Variorum

§ Conductor integration: 
— https://github.com/geopm/geopm/pull/757

§ GEOPM integration with Caliper: 
— https://github.com/LLNL/Caliper/pull/213

https://github.com/geopm/geopm/pull/757
https://github.com/LLNL/Caliper/pull/213
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Extending GEOPM: Components and Interfaces

§ Application region markup 
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application 
Context

§ Governed policy
— Node-level 

assignment

§ Balanced policy
— Cluster-level 

assignment

Power 
Assignment 

Policies
§ New policy agent plugin: 

ConductorAgent

§ New PlatformIO plugin: 
VariorumIO plugin

Extension 
Interfaces



LLNL-PRES-825680
60https://variorum.readthedocs.io/

Part III: Integration of NRM, GEOPM and Variorum
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Node Resource Manager (NRM) Integration

§ Adaemon running on the compute nodes. It 
centralizes node management activities
— job management,

— resource management, and
— power management

§ Uses slices for resource management
— Physical resources divided into separate partitions
— Used to separate individual components of 

workloads
— Helps in improved performance isolation between  

components
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Node Resource Manager (NRM) Integration

§ Slices can currently manage the following:
— CPU cores (hardware threads)
— Memory (including physical memory at sub-NUMA granularity with a patched Linux kernel)
— Kernel task scheduling class: The physical resources are partitioned primarily by using 

the cgroups mechanism of the Linux kernel. Work is under way to extend the management to I/O 
bandwidth as well as to the partitioning of last-level CPU cache using Intel’s Cache Allocation 
Technology.

§ Meant to be transparent to applications
— do not impede communication between application components,

— also compatible with (and complementary to) container runtimes such as Docker, Singularity, or 
Shifter.
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Node Resource Manager (NRM) Integration

§ NRM Daemon
— Manages power at the node level
— Works in a closed control loop, obtaining goals (power limit) 

from the higher level entity
— Acts on application workloads launched within slices by

§ NRM Client
— Launches and manages application runtime
— Relies on self-reporting by applications

• Feedback on the efficacy of its power policies,
• Identification of the critical path
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Motivation: NRM and GEOPM Integration

§ Hierarchical assignment of power optimization goals along 
logical and physical boundaries

§ Compartmentalization of the power optimization goals 
enables level-specific goals, for example, improving the 
time spent on the critical path (IPS) at the job and power 
efficiency at the node level (IPS/W). 

§ GEOPM can indirectly support containerized workflows 
— Limitation: power-assignment still at power domain 

boundaries. 

§ Leverage NRM’s existing integration with ECP applications to 
include GEOPM and SLURM integration

GEOPMSLURM
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First Attempt: NRM and GEOPM Integration

§ The GEOPM launcher integrates with the NRM launcher to launch the application
— GEOPM runs with a power budget assigned by SLURM
— Hands off execution to NRM and application through a manifest and NRM JSON
— NRM runs the application to completion

GEOPM

Application
NRM

Commands

Run
Listen

Kill
Set Power

Node Resource
Telemetry and initial power assignment
(power domain-level decomposition)

Power assignment
from SLURM
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Build and Run Application with NRM and GEOPM

Step 1: Configure and build GEOPM
$> git clone https://github.com/amarathe84/geopm-nrm.git
$> ./autogen.sh
$> ./configure --prefix=$HOME/geopm/install-ecp \

CC=<path to C compiler> \
CXX=<path to C++ compiler> \
F77=<path to Fortran compiler> \

--enable-ompt
$> make
$> make install

Step 2: Build NRM (needs nix-build/NixOS) 
$> nix-build -A nrm

Step 3: Run GEOPM and NRM
$> OMP_NUM_THREADS=<num therads> \

geopmnrmlaunch \
--geopm-ctl=process \
--geopm-policy=<JSON policy spec> \
--geopm-report=report \
--geopm-trace=trace \
--geopm-agent=power_governor \
-N <numnodes> -n <numtasks> -m block -l \

-- \
<application path>
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Interfacing Variorum with PowerStack Components

1

2

3

4



LLNL-PRES-825680
68https://variorum.readthedocs.io/

SLURM, GEOPM and Variorum Integration: Default Behavior

GEOPM component

Controller

PlatformIO

ointResource
Manager

Agent

HW Interface
(OS)

Endpoint

Spank Plugin

SLURM GEOPM Runtime

Signal and control flow

Component creation

User Submits 
Job

§ SLURM allocates resources 
and runs the spank plugin 
on each node

§ Spank plugin derives the 
default node power budget

§ GEOPM PlatformIO picks up 
the assigned power budget 
and applies it to each 
socket 

§ GEOPM continues 
execution through 
completion with the 
assigned power budget
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SLURM, GEOPM and Variorum Integration: User-Driven

/DXQFKHU &RQWUROOHU

$SSOLFDWLRQ 3URILOH 3ODWIRUP,2

&RPSRQHQW�FUHDWLRQ

-621�3ROLF\
3ROLF\

8VHU

$JHQW
3ROLF\

6DPSOH

5HSRUW�
7UDFH

+:�,QWHUIDFH�
�26�

&RQWURO 6LJQDO
6LJQDO

&RQWURO

6LJ
QD
O

6LJQDO

6LJQDO

*(230�5XQWLPH

*(230�&RPSRQHQW

'DWD�IORZ

§ SLURM allocates resources 
and runs the spank plugin 
on each node

§ Spank plugin derives the  
node power budget
Based on user’s request

§ GEOPM PlatformIO picks up 
the assigned power budget 
and applies it to each 
socket 

§ GEOPM continues 
execution
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SLURM, GEOPM and Variorum Integration: Resource Manager Driven

Launcher Controller

Application Profile PlatformIO

Component creation

Endpoint

SamplePolicy

Resource
Manager

Agent

Sample

Policy

Policy

Sample

Report/
Trace

HW Interface
(OS)

Control Signal

S
ig

n
a

l

C
o

n
tro

l

Signal

Signal

Signal

GEOPM Runtime

GEOPM Component

Data flow

User

§ SLURM allocates resources, 
derives a node power 
budget and runs the spank 
plugin on each node

§ Spank plugin passes the 
node power budget to 
GEOPM

§ GEOPM PlatformIO picks up 
the assigned power budget 
and applies it to each 
socket 

§ GEOPM continues 
execution
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SLURM Integration with Variorum

Steps involved in applying the power budget

1. Allocate job resources (salloc/sbatch)

2. Invoke Variorum API to apply power limit

3. Instantiate application with GEOPM

4. Apply JSON-specified power budget with GEOPM (static)

5. Run application to completion
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SLURM Integration: Verification/Testing

1. GEOPM Configurations: JSON
2. Applications
3. SPANK plugin configuration
4. Job configurations and outcomes

1. MPI
2. Non-MPI
3. OpenMP
4. MPI+OpenMP

Configuration files:
/etc/geopm/environment-default.json
/etc/geopm/environment-override.json

/etc/geopm/environment-override.json

{"GEOPM_AGENT": "power_balancer",
"GEOPM_POLICY": ../ig/geopm_power_balancer.json”}
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Flux provides a new hierarchical scheduling model to meet 
Exascale challenges – targeted on El Capitan

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workload challenges.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C
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C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux 
Instance

Flux 
Instance

Flux 
Instance

Flux 
Instance

Depth-
1

Depth-
2

Depth-
3
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The traditional resource data models are largely ineffective 
to cope with the resource challenge.

§ Designed when the systems are much simpler
— Node-centric models
— SLURM: bitmaps to represent a set of compute nodes
— PBSPro: a linked-list of nodes

§ HPC has become far more complex 
— Evolutionary approach to cope with the increased complexity
— E.g., add auxiliary data structures on top of the node-centric data model

§ Can be quickly unwieldy
— Every new resource type requires new a user-defined type
— A new relationship requires a complex set of pointers cross-referencing different types.
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Flux uses a graph-based resource data model to represent 
schedulable resources and their relationships.

§ A graph consists of a set of vertices and edges
— Vertex: a resource
— Edge: a relationship between two resources

Containment subsystem Network connectivity subsystem
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Real world example of variation: 
Quartz cluster, 2469 nodes, 50 W CPU power per socket
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• 2.47x difference between the 
slowest and the fastest node for MG 

• 1.91x difference for LULESH. 

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

https://github.com/flux-framework/flux-sched/tree/master/resource/policies
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Statically determining node performance classes

• Ranking every processor is not feasible from point of view of accounting as well 
as application differences

• Statically create bins of processors with similar performance instead
• Techniques for this can be simple or complex
• How many classes to create, which benchmarks to use, which parameters to tweak
• Our choice: 5 classes, LULESH and MG, 50 W power cap

• Mitigation
• Rank-to-rank: minimize spreading application across performance classes
• Run-to-run: allocate nodes from same set performance classes to similar applications
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Statically determining node performance classes:
2469 nodes of Quartz

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n ) + tLULESHi

median(tLULESH1:n )

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
max(tcombinedj

) ≠ min(tcombinedj
) (3)

p =

Y
____]

____[

1, if 0 Æ tnormi
Æ 0.10

2, if 0.10 < tnormi
Æ 0.25

3, if 0.25 < tnormi
Æ 0.40

4, if 0.40 < tnormi
Æ 0.60

5, if 0.60 < tnormi
Æ 1.0

(4)

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n ) + tLULESHi

median(tLULESH1:n )

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
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) ≠ min(tcombinedj
) (3)

p =
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2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n ) + tLULESHi

median(tLULESH1:n )

2 (2)

tnormj
=
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

https://github.com/flux-framework/flux-sched/tree/master/resource/policies


LLNL-PRES-825680
82https://variorum.readthedocs.io/

Measuring impact of variation-aware scheduling

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n 
tim

e 
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n 
tim

e 
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• allocated(a,j) returns true if node a has been allocated to job j

• Pj is the set of performance classes of the nodes allocated to job j

• Figure of merit, fomj, is a measure of how widely the job is spread across different 
performance classes 

• For a job trace, we will look for number of jobs with low figure of merit
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Variation-aware scheduling results in 2.4x reduction in rank-to-
rank variation in applications with Flux 

TABLE I: Comparison of the three policies in terms of rank-to-rank variation. The table shows the number of jobs
with a certain value of figure of merit. Having many jobs with a zero or one figure of merit value is considered good.

Policy fom = 0 fom = 1 fom = 2 fom = 3 fom = 4
HighestID 66 54 47 27 6
LowestID 79 34 43 33 11

Variation-aware 184 7 8 1 0
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Fig. 8: Results of the variation-aware policy depicting significant reduction in performance variation
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Facilities Recap: Mitigating Power Swings on Sierra/Lassen with in-
depth application analysis with Variorum

• Livermore Big Artificial Neural Network 
toolkit (LBANN) -- infrastructure used for 
deep learning in HPC

• LBANN utilizes all 4 GPUs per node
• Data shows 3 minute samples over 6 

hours on Sierra with >200 KW swings
• Other workflows have similar trends with 

power fluctuations at scale
• Mitigation of power fluctuations is 

required to avoid electrical supply 
disruption

• Variorum + Flux can dynamically 
analyze applications and prevent future 
fluctuations

Example: LBANN on Sierra at full scale has significant fluctuations impacting 
LLNL’s electrical grid -- workload swings expected to worsen at exascale
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Combining previous research into upcoming production efforts: 
Flux + Variorum to monitor and manage power swings of workflows 

• Flux Power Manager Module is 
underway for El Capitan 

• Utilizes the Variorum JSON interface to 
develop a Flux system instance to 
monitor and control power

• Algorithms for detecting and managing 
power swings at scale are underway 

• Example shows LBANN workflow’s Lenet
application being monitored

https://github.com/rountree/flux-power-mgr

https://github.com/rountree/flux-power-mgr
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Interfacing Variorum with PowerStack Components

1

2

3

4
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Enabling workflow power monitoring with the Kokkos and 
Caliper ports of Variorum

• Utilizes the Variorum JSON interface to allow for 
monitoring of integrated workflows

• Kokkos port has been merged into production 
(with kokkos-tools) and provides per-rank output

• Caliper service is under development

• Both ports will be tested for scalability with 
benchmarks and hardened in the upcoming 
Variorum release 

https://github.com/kokkos/kokkos-tools/tree/develop/profiling/variorum-
connector

https://github.com/kokkos/kokkos-tools/tree/develop/profiling/variorum-connector
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Upcoming Variorum Next Steps

Development Efforts

§ Upcoming release: last quarter of 2021

§ Ports for AMD CPU (WIP), PowerAPI, 
AMD GPUs

§ Advanced APIs

§ CI and testing for ECP on exascale
microarchitectures

Research Efforts

§ Harden Caliper service for Variorum

§ Workflow integration (MuMMI, E3SM, 
LBANN)

§ MLPerf (GPU) characterization

§ SLURM + GEOPM + Variorum: Extend 
it to use JSON
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§ Both modules will be repeated on August 20 and August 23
— Introduction to Variorum
— Integrating Variorum with System Software and Tools

§ Submit your issues or feature request: https://github.com/llnl/variorum/issues

§ Documentation: https://variorum.readthedocs.io

§ Join our mailing list (low traffic): variorum-users@llnl.gov

§ Questions? Email us at variorum-maintainers@llnl.gov

Thank you for attending our tutorial series!

https://github.com/llnl/variorum/issues
https://variorum.readthedocs.io/
mailto:variorum-users@llnl.gov
mailto:variorum-maintainers@llnl.gov
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