
LLNL-PRES-825680
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

https://variorum.readthedocs.io/

Integrating Variorum with System Software and Tools
Module 2 of 2, ECP Lecture Series

13 August 2021 8:30AM-10:00AM PDT
27 August 2021 4:00PM-5:30PM PDT (Repeat)

Tapasya Patki, Aniruddha Marathe,
Stephanie Brink, and Barry Rountree

LLNL-PRES-825680
2https://variorum.readthedocs.io/

§ Recap module 1, revisit PowerStack and JSON API (15 minutes)

§ Job-level power management: GEOPM (35 minutes)

§ System-level power management:
— SLURM (5 minutes)
— Flux (20 minutes)

§ Application and workflow power management: Kokkos and Caliper (5 minutes)

§ Upcoming features in Variorum (5 minutes)

§ Wrap up (5 minutes)

Module 2 Agenda

LLNL-PRES-825680
3https://variorum.readthedocs.io/

HPC PowerStack: Community Effort on System-wide, dynamic
power management

https://hpcpowerstack.github.io/

https://hpcpowerstack.github.io/

LLNL-PRES-825680
4https://variorum.readthedocs.io/

• Current industry collaborators: Intel, IBM, AMD, ARM,
NVIDIA, Cray/HPE, Fujitsu, Altair, ATOS/Bull, and
PowerAPI community standard

• Multiple academic and research collaborators across
Europe, Asia, US

• Three working groups established

• Dynamic power management at all levels, along with
prioritization of the critical path, application performance
and throughput

• One of the prototypes developed as part of ECP using
SLURM, GEOPM, Variorum/msr-safe (close
collaboration with Intel)

• Additional software with Flux and Variorum underway

PowerStack: Stakeholders

EEHPC-WG’s insight into sites investing in
Energy- and Power-aware Job Scheduling
and Resource Management (EPA-JSRM)

LLNL-PRES-825680
5https://variorum.readthedocs.io/

Variorum: Vendor-neutral user space library for power
management
§ Power management capabilities (and their

interfaces, domains, latency, capabilities)
widely differ from one vendor to the next

§ Variorum: Platform-agnostic
vendor-neutral, simple front-facing APIs
— Evolved from libmsr, and designed to target

several platforms and architectures
— Abstract away tedious and chaotic details

of low-level knobs
— Implemented in C, with function pointers

to specific target architecture
— Integration with higher-level power

management software through JSON

Intel
RAPL

IBM
OPAL

IBM+NVIDIA
Power

Shifting Ratio

ARM
HWMON

NVIDIA
NVML

AMD
eSMI

LLNL-PRES-825680
6https://variorum.readthedocs.io/

§ Initial v0.1.0 released Nov 11, 2019
— Platforms and microarchitectures supported:

• Intel: Kaby Lake, Skylake, Broadwell, Haswell, Ivy Bridge, Sandy Bridge
• IBM: Power9

§ Current release (April 2021), v0.4.1:
— Platforms and microarchitectures supported:

• Nvidia: Volta
• ARM: Juno
• AMD (under review)

— JSON API to integrate with external tools (e.g., Kokkos, Caliper, GEOPM, Flux)

Variorum Current Support (as of v0.4.1)

https://github.com/llnl/variorum

https://github.com/llnl/variorum

LLNL-PRES-825680
7https://variorum.readthedocs.io/

§ Many of Variorum’s APIs are printing output to stdout for user to parse
— While nice for providing a friendly interface to understanding the hardware-

level metrics, this limits ability for Variorum to provide these metrics to an external tool

§ Added int variorum_get_node_power_json(json_t *) to integrate variorum with other
tools (e.g., Flux and Kokkos)
— { “hostname”: (string),
— “timestamp”: (int),
— “power_node”: (int),
— “power_cpu_socket_<id>”: (int)
— “power_mem_socket_<id>”: (int)
— “power_gpu_socket_<id>”: (int) }

§ Example: Reporting end-to-end power usage for Kokkos loops

§ Example: Provide power-awareness to Flux scheduling model enabling resources to be
assigned based on available power

Adding a vendor-neutral JSON interface

JSON object
keys

LLNL-PRES-825680
8https://variorum.readthedocs.io/

Interfacing Variorum with PowerStack Components

LLNL-PRES-825680
9https://variorum.readthedocs.io/

Interfacing Variorum with PowerStack Components

1

3

4

LLNL-PRES-825680
10https://variorum.readthedocs.io/

Collaborations

GEOPM Core Team (Intel)
Jonathan Eastep (Project Lead)
Chris Cantalupo (Lead Developer)
Fede Ardanaz
Brad Geltz
Brandon Baker
Mohammad Ali
Siddhartha Jana
Diana Guttman

LLNL Team
Aniruddha Marathe
Tapasya Patki
Stephanie Brink
Barry Rountree

ANL Team
Pete Beckman
Kamil Iskra
Swann Perarnau
Florence Monna
Kazutomo Yoshii

LLNL-PRES-825680
11https://variorum.readthedocs.io/

Agenda: Integration with Runtime Systems

• Part I: Overview of GEOPM (5 minutes)
• High-level design
• User-facing, application-context markup API

• Part II: Plug-ins to extend GEOPM algorithm and platform support (10 minutes)
• Agent: Run-time tuning extension
• PlatformIO: Platform-specific support extension
• Demonstrations (5 minutes)

• Part III: ECP Argo Contributions (10 minutes)
• VariorumIO: Variorum plugin for GEOPM
• NRM integration: Decentralizing job-level power management
• ConductorAgent: Transparent, performance-optimizing configuration selection
• IBM PlatformIO plugin: Port of GEOPM to IBM Power9 platform

LLNL-PRES-825680
12https://variorum.readthedocs.io/

Power-Constrained Performance-Optimization Problem

Problem definition

Given a job-level power constraint and number of nodes,
how do we optimize application performance?

LLNL-PRES-825680
13https://variorum.readthedocs.io/

GEOPM: Global Extensible Open Power Manager

• Power-aware runtime system for large-scale HPC systems

• Intel developed a production-grade, scalable, open-source job-level extensible
runtime and framework

• Extensibility through plug-ins + advanced default functionality

• Limitations of existing runtimes
• Research-based codes addressed specific needs and situations
• Ad-hoc, targeted specific architecture, memory model
• Suffered scalability issues
• Reliance on empirical data

• Funded through a contract with Argonne National Laboratory

LLNL-PRES-825680
14https://variorum.readthedocs.io/

GEOPM System Model

Extensible / Plug-in components
Human actors

External components – h/w, s/w, files

Job Monitor

Job
Optimizer

Power-
aware Job
Scheduler

User
Applications

Site
Admin

User

Application
Developer

Per-node
Trace file

System
Hardware

(sensors,
controls,

actuators)GEOPM

LLNL-PRES-825680
15https://variorum.readthedocs.io/

Background: System Software Stack for Power Management

• Demand Response, Renewables
Site

• Overprovisioning, Job scheduling
Cluster

• Adaptive runtimes, Power balancing
Job/Application

• Measurement and control (capping)
NodeIn

he
rit

ed
 P

ow
er

 B
ou

nd
s

RMAP,
P-SLURM,
PowSched
GEOPM,

Conductor,
Kokkos,...

Libmsr,
msr-safe

Dashboards

Software

LLNL-PRES-825680
16https://variorum.readthedocs.io/

Background: System Software Stack for Power Management

• Demand Response, Renewables
Site

• Overprovisioning, Job scheduling
Cluster

• Adaptive runtimes, Power balancing
Job/Application

• Measurement and control (capping)
NodeIn

he
rit

ed
 P

ow
er

 B
ou

nd
s

RMAP,
P-SLURM,
PowSched
GEOPM,

Conductor,
Kokkos,...

Libmsr,
msr-safe

Dashboards

Software

§ Critical contribution to the development of HPC
power-aware system software stack.

LLNL-PRES-825680
17https://variorum.readthedocs.io/

GEOPM Project Goals

§ Managing power
• Maximizing power efficiency or performance

under a power cap

§ Managing manufacturing variation
• Power / frequency relationship is non-

uniform across different processors of same
type

§ Managing workload imbalance
• Divert power to CPUs with more work

§ Managing system jitter
• Divert power to CPUs interrupted or stalled

by system noise

§ Application profiling
• Report application performance and

power metrics

§ Runtime application tuning
• Extensible runtime control agent with

plug-in architecture

§ Integration with MPI
• Automatic integration with MPI

runtime through PMPI interface

§ Integration with OpenMP
• Automatic integration with OpenMP

through OMPT interface

LLNL-PRES-825680
18https://variorum.readthedocs.io/

GEOPM: Capabilities

§ Enables analysis and transparent tuning of distributed-memory applications

§ Feedback-guided optimization: Leverages lightweight application profiling

§ Learns application phase patterns: load imbalance across nodes, distinct

computational phases within a node

§ Uses tuning parameters: processor power limit, core frequency, etc.

§ Built-in optimization algorithms: Static Power capping, energy reduction,

load balancing, limiting synchronization costs

LLNL-PRES-825680
19https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication

+
plugin infrastructure

Agent
PlatformIO

Markup
API

Application

Endpoint

LLNL-PRES-825680
20https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication

+
plugin infrastructure

Agent
PlatformIO

Markup
API

Application

Endpoint

LLNL-PRES-825680
21https://variorum.readthedocs.io/

GEOPM Infrastructure

GEOPM Core
Hierarchical communication

+
power-management plugin

Agent Plugin

PlatformIO Plugin

LLNL-PRES-825680
22https://variorum.readthedocs.io/

GEOPM Infrastructure

• GEOPM Source repository navigation
• Branches, directories, releases
• GEOPM Wiki

• Build process
• Dependencies
• Build configuration

• GEOPM core infrastructure source
• Overview of important classes
• Plug-in source
• Tutorials and examples
• Test coverage

https://github.com/geopm/geopm
https://geopm.github.io/

LLNL-PRES-825680
23https://variorum.readthedocs.io/

GEOPM: Input/Output Files

Controller

Application Profile PlatformIO

Agent

Report/
Trace

HW Interface
(OS)

GEOPM RuntimePolicy

Signal and control flow
Component creation

GEOPM component
I/O files

LLNL-PRES-825680
24https://variorum.readthedocs.io/

GEOPM Configuration, Build and Launch

LLNL-PRES-825680
25https://variorum.readthedocs.io/

Building an Application with GEOPM

Step 1 : Set the environment
$> module load geopm
$> module load <intel compiler>
$> module load <MPI compiled with intel-c>

Step 2: Link the Application to GEOPM library
$> mpicc APP_SRC.c -L$GEOPM_LIB -lgeopm \

-o APP_EXEC \
COMPILER_FLAGS

Example
$> mpicc helloworld.c -L$GEOPM_LIB -lgeopm -o a.out

LLNL-PRES-825680
26https://variorum.readthedocs.io/

Running an Application with GEOPM

Step 3: Generate a policy file
$> geopmagent --agent=AGENT_NAME --policy=INPUT_PARAMS > POLICY_FILE.json

Example:
$> geopmagent --agent=monitor --policy=None > monitor_policy.json

Step 4: Launch application with GEOPM launcher wrapper
$> geopmlaunch srun -n < > -N < >\

--geopm-ctl=process \
--geopm-agent=AGENT_NAME \
--geopm-policy=POLICY_FILE.json \
--geopm-report=REPORT_FILE.txt \
--geopm-trace=TRACE_FILE.csv \
-- APP_EXEC APP_OPTIONS

Example:
$> geopmlaunch srun -n 4 -N 1 \

--geopm-ctl=process \
--geopm-agent=monitor \
--geopm-policy=monitor_policy.json \
--geopm-report=report.txt \
--geopm-trace=trace.csv \
-- a.out

LLNL-PRES-825680
27https://variorum.readthedocs.io/

Demo: Running Application with GEOPM

https://www.youtube.com/watch?v=Rr30AprH8Eo&list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz

LLNL-PRES-825680
28https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication

+
plugin infrastructure

Agent
PlatformIO

Markup
API

Application

Endpoint

LLNL-PRES-825680
29https://variorum.readthedocs.io/

GEOPM: Components and Interfaces

§ Application region markup
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application
Context

§ Governed policy
— Node-level

assignment

§ Balanced policy
— Cluster-level

assignment

Power
Assignment

Policies
§ New Agent plugin:

ConductorAgent

§ New PlatformIO plugin:
IBM port of GEOPM

Extension
Interfaces

LLNL-PRES-825680
30https://variorum.readthedocs.io/

GEOPM Markup API: Purpose

• C interfaces provided in GEOPM that the application links against
• Resemble typical profiler interfaces

• Annotation functions for programmers to provide information about application
critical path and phases to GEOPM
• Points where bulk synchronizations occur

• Phase changes occur in an MPI rank (i.e. phase entry and exit)

• Hints on whether phases will be compute-,memory-, or communication-intensive

• How much progress each MPI rank has made in the phase (critical path)

LLNL-PRES-825680
31https://variorum.readthedocs.io/

Application Markup API

• Marking up regions of interest
• geopm_prof_region(name, hint, ID)
• geopm_prof_enter(ID)
• geopm_prof_exit(ID)

• Marking region progress
• geopm_prof_progress(ID, %progress)

• Marking a timestep
• geopm_prof_epoch()

MPI/Sequential Region

• Marking up regions of interest
• geopm_tprof_init(num_work_unit)
• geopm_tprof_init_loop(num_thread,

thread ID,
num_iter,
chunk_size)

• Marking region progress
• geopm_tprof_post()

OpenMP Region

LLNL-PRES-825680
32https://variorum.readthedocs.io/

Demo: Using the GEOPM Markup API

https://github.com/geopm/geopm/blob/dev/tutorial/tutorial_4.c

LLNL-PRES-825680
33https://variorum.readthedocs.io/

Part II: Plug-ins to extend GEOPM algorithm
and platform support

LLNL-PRES-825680
34https://variorum.readthedocs.io/

GEOPM: Policy plugins

§ Application region markup
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application
Context

§ Governed policy
— Node-level

assignment

§ Balanced policy
— Cluster-level

assignment

Power
Assignment

Policies
§ New Agent plugin:

ConductorAgent

§ New PlatformIO plugin:
IBM port of GEOPM

Extension
Interfaces

LLNL-PRES-825680
35https://variorum.readthedocs.io/

Demo: Using the Default GEOPM Policies

https://www.youtube.com/watch?v=sGyXhRhdSdk&index=5&list=PLwm-z8c2AbIBU-T7HnMi_Pux7iO3gQQnz

LLNL-PRES-825680
36https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication

+
plugin infrastructure

Agent
PlatformIO

Markup
API

Application

Endpoint

LLNL-PRES-825680
37https://variorum.readthedocs.io/

GEOPM Components of Interest

GEOPM Core
Hierarchical communication

+
plugin infrastructure

Agent
PlatformIO

Markup
API

Application

Endpoint

MSR access
control

telemetry
application context

Power mgmt
algorithm
profiling

accounting

Agent

PlatformIO

LLNL-PRES-825680
38https://variorum.readthedocs.io/

GEOPM Plugin Interface

• Two types of plugins: PlatformIO and Agent plugins
• Example Agent plugins

• MonitorAgent
• BalancerAgent
• GoverningAgent

• Example PlatformIO plugins
• VariorumIOGroup

• Tutorial plugins: ExampleAgent and ExampleIOGroup
• Key methods and code blocks
• Policy description interface

https://github.com/geopm/geopm/tree/dev/tutorial/agent
https://github.com/geopm/geopm/tree/dev/tutorial/iogroup

LLNL-PRES-825680
39https://variorum.readthedocs.io/

VariorumIO: Interfacing GEOPM with Variorum for Vendor Neutrality

§ Motivation: GEOPM uses platform-specific interfaces for signals and controls on
the target architecture
— A PlatformIO plug-in interfacing with Variorum as the vendor-neutral lower-level API

§ Components
— VariorumIO plugin to map GEOPM-specific data structures to Variorum
— Low-level API in Variorum to aggregate low-level signals and pass to GEOPM

§ Challenge: Translate vendor-specific into vendor-agnostic signals and controls

§ On-going work:
— Integration with JSON API for capability query
— Evaluation on several platforms

LLNL-PRES-825680
40https://variorum.readthedocs.io/

VariorumIO: Contributions to GEOPM and Variorum

§ GEOPM: Added VariorumIO

§ Code contributions:

https://github.com/amarathe84/geopm/pull/1

§ Supported version: GEOPM v1.1

§ Variorum: Added low-level API to
aggregate platform signals and controls

§ Code contributions:

https://github.com/LLNL/variorum/pull/126

§ Supported version: Variorum v0.4.0

https://github.com/amarathe84/geopm/pull/1
https://github.com/LLNL/variorum/pull/126

LLNL-PRES-825680
41https://variorum.readthedocs.io/

ConductorAgent: Selecting Power-Optimizing Configuration

§ Approach: Hardware Overprovisioning with job-level power
guarantees
— More compute resources than you can power up at once

§ Objective: Optimize job performance under a power constraint

§ Solution: GEOPM – power-constrained performance
optimization

§ ECP Argo Contributions:
— Augment GEOPM’s algorithm with performance-optimizing application

configurations: # threads, Frequency, etc.
— Port GEOPM to IBM POWER9 (support for LLNL Sierra)

LLNL-PRES-825680
42https://variorum.readthedocs.io/

Extending GEOPM: Components and Interfaces

§ Application region markup
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application
Context

§ Governed policy
— Node-level

assignment

§ Balanced policy
— Cluster-level

assignment

Power
Assignment

Policies
§ New policy agent plugin:

ConductorAgent

§ New PlatformIO plugin:
VariorumIO plugin

Extension
Interfaces

LLNL-PRES-825680
44https://variorum.readthedocs.io/

Naïve Scheme: Static Power Allocation

§ Equally distribute and enforce power constraint over all nodes of a job
— Uses Intel’s Running Average Power Limit (RAPL) interface

§ Statically select a configuration under the power constraint
— Configuration: {Number of cores, Frequency/power limit}
— Commonly used: Packed configuration

• Maximum cores possible on the processor
• Frequency or power limit as the control knob

LLNL-PRES-825680
45https://variorum.readthedocs.io/

Limitations of Static Power Allocation

1. Trivial node-level configurations may
be inefficient

Input: {# cores, frequency/power limit}
Output: {Execution time, power usage}

• Up to 30% slower than the optimal
configuration

• Needs prohibitively large number of
runs of the application

CoMD
64 Nodes

50 60 70 80 90
Processor power usage (watts)

LLNL-PRES-825680
46https://variorum.readthedocs.io/

Limitations of Static Power Allocation

1. Trivial node-level configurations may
be inefficient

Input: {# cores, frequency/power limit}
Output: {Execution time, power usage}

• Up to 30% slower than the optimal
configuration

• Needs prohibitively large number of
runs of the application

2. Portion of power left unused with load-
imbalanced applications (up to 40%)

CoMD
64 Nodes

50 60 70 80 90
Processor power usage (watts)

LLNL-PRES-825680
47https://variorum.readthedocs.io/

Conductor: Dynamic Configuration and Power Management

§ Goals of ConductorAgent
— Speed up computation on the critical path
— Use power-efficient configuration

§ Need to dynamically identify
— Computation region potentially on the critical path
—{execution time, power usage} profile for every computation on every

processor

LLNL-PRES-825680
48https://variorum.readthedocs.io/

ConductorAgent AlgorithmStart

Explore configurations

1 2 3 n. .
.

MPI processes
Configurations

k1, k2, ..., kn
k
1

k
2

k
3

k
n

Allgather
{Power, Execution Time}

Step 1: Configuration Exploration

LLNL-PRES-825680
49https://variorum.readthedocs.io/

50 60 70 80 90
Power usage (watts)

Start

Explore configurations

Construct Pareto frontier

Select configuration kOPT

ConductorAgent Algorithm

Step 1: Configuration Exploration

LLNL-PRES-825680
50https://variorum.readthedocs.io/

Start

Explore configurations

Construct Pareto frontier

Select Configuration kOPT

Is computation
non-critical?

Speed up
(with unused power)

No

Calculate new
power

allocation

Slow down
(reduce
power)

Yes
Power Limit:

70W

ParaDiS: Before power re-allocation

ParaDiS: After power re-allocation

power usage (watts)

50 55 60 65 70

50 55 60 65 70 75

0
 5

 1
0

 15

power usage (watts)

Ta

sk
s

Ta

sk
s

0
 5

 1
0

 15

ConductorAgent Algorithm

Step 2: Power Re-allocation

LLNL-PRES-825680
51https://variorum.readthedocs.io/

Conductor: Integration into GEOPM with Variorum

§ OMPT class
— Explore {OMP, Pcap} configurations during the exploration phase
— Select power-efficient configuration during regular execution.

§ Profile class
— Report end of timestep (i.e., ‘epoch’), application and system telemetry to enable

sweep of configuration at runtime.

§ ConfigApp class
— Perform profiling, generate pareto-optimal configurations.

§ ConfigAgent class
— Share telemetry with PowerBalancer agent, send configuration to OMPT.

LLNL-PRES-825680
52https://variorum.readthedocs.io/

ConductorAgent OMPT Profiler

Init
Handshake

Shared
memory
space

GEOPM::
SharedMemory

GEOPM::
SharedMemoryUser

GEOPM Controller Application Process

Time

Initialization: GEOPM, Application Handshake

Initialize control
and telemetry

LLNL-PRES-825680
53https://variorum.readthedocs.io/

ConductorAgent OMPT Profiler

GEOPM Controller Application Process

Time

Configuration Exploration: Set Configuration, Collect Telemetry

Configuration Exploration

ThreadCnt
PowerCap
RegionID

Power
Time

Set
Threads

Set Configuration
Set Power Cap

Telemetry
Run Region

Signal
Timestep

Sweep all
configurations

LLNL-PRES-825680
54https://variorum.readthedocs.io/

ConductorAgent OMPT Profiler

GEOPM Controller Application Process

Time

Configuration Selection: Pick Power-Efficient Configurations

Configuration Selection

Set Configuration
Set Power Cap ThreadCnt

PowerCap
Set

ThreadsRun
Region

Through
application
completion

LLNL-PRES-825680
55https://variorum.readthedocs.io/

Conductor Integration: Results

ECP Argo ECP Argo

LLNL-PRES-825680
58https://variorum.readthedocs.io/

Conductor Integration: On-going Efforts

§ Refresh the Conductor plugin to the latest GEOPM code

§ Integration with JSON interface of Variorum

§ Conductor integration:
— https://github.com/geopm/geopm/pull/757

§ GEOPM integration with Caliper:
— https://github.com/LLNL/Caliper/pull/213

https://github.com/geopm/geopm/pull/757
https://github.com/LLNL/Caliper/pull/213

LLNL-PRES-825680
59https://variorum.readthedocs.io/

Extending GEOPM: Components and Interfaces

§ Application region markup
API
— Computation/communicati

on regions of interest

§ Epoch
— End of iteration

§ OpenMP event callbacks

Collecting Application
Context

§ Governed policy
— Node-level

assignment

§ Balanced policy
— Cluster-level

assignment

Power
Assignment

Policies
§ New policy agent plugin:

ConductorAgent

§ New PlatformIO plugin:
VariorumIO plugin

Extension
Interfaces

LLNL-PRES-825680
60https://variorum.readthedocs.io/

Part III: Integration of NRM, GEOPM and Variorum

LLNL-PRES-825680
61https://variorum.readthedocs.io/

Node Resource Manager (NRM) Integration

§ Adaemon running on the compute nodes. It
centralizes node management activities
— job management,

— resource management, and
— power management

§ Uses slices for resource management
— Physical resources divided into separate partitions
— Used to separate individual components of

workloads
— Helps in improved performance isolation between

components

LLNL-PRES-825680
62https://variorum.readthedocs.io/

Node Resource Manager (NRM) Integration

§ Slices can currently manage the following:
— CPU cores (hardware threads)
— Memory (including physical memory at sub-NUMA granularity with a patched Linux kernel)
— Kernel task scheduling class: The physical resources are partitioned primarily by using

the cgroups mechanism of the Linux kernel. Work is under way to extend the management to I/O
bandwidth as well as to the partitioning of last-level CPU cache using Intel’s Cache Allocation
Technology.

§ Meant to be transparent to applications
— do not impede communication between application components,

— also compatible with (and complementary to) container runtimes such as Docker, Singularity, or
Shifter.

LLNL-PRES-825680
63https://variorum.readthedocs.io/

Node Resource Manager (NRM) Integration

§ NRM Daemon
— Manages power at the node level
— Works in a closed control loop, obtaining goals (power limit)

from the higher level entity
— Acts on application workloads launched within slices by

§ NRM Client
— Launches and manages application runtime
— Relies on self-reporting by applications

• Feedback on the efficacy of its power policies,
• Identification of the critical path

LLNL-PRES-825680
64https://variorum.readthedocs.io/

Motivation: NRM and GEOPM Integration

§ Hierarchical assignment of power optimization goals along
logical and physical boundaries

§ Compartmentalization of the power optimization goals
enables level-specific goals, for example, improving the
time spent on the critical path (IPS) at the job and power
efficiency at the node level (IPS/W).

§ GEOPM can indirectly support containerized workflows
— Limitation: power-assignment still at power domain

boundaries.

§ Leverage NRM’s existing integration with ECP applications to
include GEOPM and SLURM integration

GEOPMSLURM

LLNL-PRES-825680
65https://variorum.readthedocs.io/

First Attempt: NRM and GEOPM Integration

§ The GEOPM launcher integrates with the NRM launcher to launch the application
— GEOPM runs with a power budget assigned by SLURM
— Hands off execution to NRM and application through a manifest and NRM JSON
— NRM runs the application to completion

GEOPM

Application
NRM

Commands

Run
Listen

Kill
Set Power

Node Resource
Telemetry and initial power assignment
(power domain-level decomposition)

Power assignment
from SLURM

LLNL-PRES-825680
66https://variorum.readthedocs.io/

Build and Run Application with NRM and GEOPM

Step 1: Configure and build GEOPM
$> git clone https://github.com/amarathe84/geopm-nrm.git
$> ./autogen.sh
$> ./configure --prefix=$HOME/geopm/install-ecp \

CC=<path to C compiler> \
CXX=<path to C++ compiler> \
F77=<path to Fortran compiler> \

--enable-ompt
$> make
$> make install

Step 2: Build NRM (needs nix-build/NixOS)
$> nix-build -A nrm

Step 3: Run GEOPM and NRM
$> OMP_NUM_THREADS=<num therads> \

geopmnrmlaunch \
--geopm-ctl=process \
--geopm-policy=<JSON policy spec> \
--geopm-report=report \
--geopm-trace=trace \
--geopm-agent=power_governor \
-N <numnodes> -n <numtasks> -m block -l \

-- \
<application path>

LLNL-PRES-825680
67https://variorum.readthedocs.io/

Interfacing Variorum with PowerStack Components

1

2

3

4

LLNL-PRES-825680
68https://variorum.readthedocs.io/

SLURM, GEOPM and Variorum Integration: Default Behavior

GEOPM component

Controller

PlatformIO

ointResource
Manager

Agent

HW Interface
(OS)

Endpoint

Spank Plugin

SLURM GEOPM Runtime

Signal and control flow

Component creation

User Submits
Job

§ SLURM allocates resources
and runs the spank plugin
on each node

§ Spank plugin derives the
default node power budget

§ GEOPM PlatformIO picks up
the assigned power budget
and applies it to each
socket

§ GEOPM continues
execution through
completion with the
assigned power budget

LLNL-PRES-825680
69https://variorum.readthedocs.io/

SLURM, GEOPM and Variorum Integration: User-Driven

/DXQFKHU &RQWUROOHU

$SSOLFDWLRQ 3URILOH 3ODWIRUP,2

&RPSRQHQW�FUHDWLRQ

-621�3ROLF\
3ROLF\

8VHU

$JHQW
3ROLF\

6DPSOH

5HSRUW�
7UDFH

+:�,QWHUIDFH�
�26�

&RQWURO 6LJQDO
6LJQDO

&RQWURO

6LJ
QD
O

6LJQDO

6LJQDO

*(230�5XQWLPH

*(230�&RPSRQHQW

'DWD�IORZ

§ SLURM allocates resources
and runs the spank plugin
on each node

§ Spank plugin derives the
node power budget
Based on user’s request

§ GEOPM PlatformIO picks up
the assigned power budget
and applies it to each
socket

§ GEOPM continues
execution

LLNL-PRES-825680
70https://variorum.readthedocs.io/

SLURM, GEOPM and Variorum Integration: Resource Manager Driven

Launcher Controller

Application Profile PlatformIO

Component creation

Endpoint

SamplePolicy

Resource
Manager

Agent

Sample

Policy

Policy

Sample

Report/
Trace

HW Interface
(OS)

Control Signal

S
ig

n
a

l

C
o

n
tro

l

Signal

Signal

Signal

GEOPM Runtime

GEOPM Component

Data flow

User

§ SLURM allocates resources,
derives a node power
budget and runs the spank
plugin on each node

§ Spank plugin passes the
node power budget to
GEOPM

§ GEOPM PlatformIO picks up
the assigned power budget
and applies it to each
socket

§ GEOPM continues
execution

LLNL-PRES-825680
71https://variorum.readthedocs.io/

SLURM Integration with Variorum

Steps involved in applying the power budget

1. Allocate job resources (salloc/sbatch)

2. Invoke Variorum API to apply power limit

3. Instantiate application with GEOPM

4. Apply JSON-specified power budget with GEOPM (static)

5. Run application to completion

LLNL-PRES-825680
72https://variorum.readthedocs.io/

SLURM Integration: Verification/Testing

1. GEOPM Configurations: JSON
2. Applications
3. SPANK plugin configuration
4. Job configurations and outcomes

1. MPI
2. Non-MPI
3. OpenMP
4. MPI+OpenMP

Configuration files:
/etc/geopm/environment-default.json
/etc/geopm/environment-override.json

/etc/geopm/environment-override.json

{"GEOPM_AGENT": "power_balancer",
"GEOPM_POLICY": ../ig/geopm_power_balancer.json”}

LLNL-PRES-825680
76https://variorum.readthedocs.io/

Flux provides a new hierarchical scheduling model to meet
Exascale challenges – targeted on El Capitan

Our “Fully Hierarchical Scheduling” is designed to cope with many
emerging workload challenges.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux
Instance

Flux
Instance

Flux
Instance

Flux
Instance

Depth-
1

Depth-
2

Depth-
3

LLNL-PRES-825680
77https://variorum.readthedocs.io/

The traditional resource data models are largely ineffective
to cope with the resource challenge.

§ Designed when the systems are much simpler
— Node-centric models
— SLURM: bitmaps to represent a set of compute nodes
— PBSPro: a linked-list of nodes

§ HPC has become far more complex
— Evolutionary approach to cope with the increased complexity
— E.g., add auxiliary data structures on top of the node-centric data model

§ Can be quickly unwieldy
— Every new resource type requires new a user-defined type
— A new relationship requires a complex set of pointers cross-referencing different types.

LLNL-PRES-825680
78https://variorum.readthedocs.io/

Flux uses a graph-based resource data model to represent
schedulable resources and their relationships.

§ A graph consists of a set of vertices and edges
— Vertex: a resource
— Edge: a relationship between two resources

Containment subsystem Network connectivity subsystem

LLNL-PRES-825680
79https://variorum.readthedocs.io/

Real world example of variation:
Quartz cluster, 2469 nodes, 50 W CPU power per socket

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• 2.47x difference between the
slowest and the fastest node for MG

• 1.91x difference for LULESH.

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

LLNL-PRES-825680
80https://variorum.readthedocs.io/

Statically determining node performance classes

• Ranking every processor is not feasible from point of view of accounting as well
as application differences

• Statically create bins of processors with similar performance instead
• Techniques for this can be simple or complex
• How many classes to create, which benchmarks to use, which parameters to tweak
• Our choice: 5 classes, LULESH and MG, 50 W power cap

• Mitigation
• Rank-to-rank: minimize spreading application across performance classes
• Run-to-run: allocate nodes from same set performance classes to similar applications

LLNL-PRES-825680
81https://variorum.readthedocs.io/

Statically determining node performance classes:
2469 nodes of Quartz

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n) + tLULESHi

median(tLULESH1:n)

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
max(tcombinedj

) ≠ min(tcombinedj
) (3)

p =

Y
____]

____[

1, if 0 Æ tnormi
Æ 0.10

2, if 0.10 < tnormi
Æ 0.25

3, if 0.25 < tnormi
Æ 0.40

4, if 0.40 < tnormi
Æ 0.60

5, if 0.60 < tnormi
Æ 1.0

(4)

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n) + tLULESHi

median(tLULESH1:n)

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
max(tcombinedj

) ≠ min(tcombinedj
) (3)

p =

Y
____]

____[

1, if 0 Æ tnormi
Æ 0.10

2, if 0.10 < tnormi
Æ 0.25

3, if 0.25 < tnormi
Æ 0.40

4, if 0.40 < tnormi
Æ 0.60

5, if 0.60 < tnormi
Æ 1.0

(4)

2469 of these 2604 nodes. The remainder of the nodes
were either unavailable or reserved for debugging purposes
during the experiments. The x-axis for Figure 4 depicts
nodes sorted by their ID number, and the y-axis shows
the raw execution time of the single-node benchmarks
in seconds. The maximum possible power per socket for
this microarchitecture is 130W, but for this experiment
we set a power cap of 50W per socket with Intel’s RAPL
technology [17], [18]. Figure 5(a) shows the same data in a
histogram. Here, the execution time is scaled by dividing
it by the maximum execution time.

As we can observe from these two figures, applications
can exhibit significant performance di�erences. There was
a 2.47x performance di�erence between the slowest and
the fastest node for MG, and a 1.91x di�erence for
LULESH. Another important observation from our data
is that nodes can be categorized as inherently e�cient or
ine�cient—e�cient nodes will consistently exhibit good
performance, although slight deviations may occur based
on the application under consideration. This can be
inferred by comparing the overall trends for the sorted
list of nodes across the two benchmarks. Figure ?? shows
the spread of the 2469 nodes from the dataset, and as can
be observed, variation for MG had a wider spread than
that for LULESH, indicating that the impact range for
manufacturing variability depends on the workload.

In general, there are multiple sources of performance
variation. These sources can be deterministic or
non-deterministic. Deterministic sources are based on
underlying hardware or entities that can be understood
statically, are reproducible, and can be predicted to some
extent. These sources do not depend on dynamic user
environments or job mix. Examples of such deterministic
sources of variation include component-level heterogeneity,
processor manufacturing di�erences or processor aging.
We can monitor and understand these sources of variation
o�ine through initial bring-up studies or regular
benchmarking, and distill them to obtain pre-determined
information for making better scheduling decisions. For
example, with processor manufacturing variability, we
can gather node-level performance data on selected
benchmarks and use a combined score to rank nodes
by their e�ciency and divide them into performance
classes. We discuss this approach in the next subsection.
Non-deterministic sources of variation, on the other
hand, are not reproducible and cannot be understood
statically. They typically depend on specific workloads,
performance of neighboring jobs, current job mix, network
or IO congestion, and user or system parameters. For
such sources of variation, it is not possible to obtain
any relevant information in advance, and thus online
monitoring and runtime modeling is required.

Performance variation can manifest in two ways. First,
rank-to-rank variation can occur within the application
resulting in unforeseen slowdowns and load imbalance.
The performance of an application will depend on task

assigned to the the slowest node in its allocation, making it
sensitive to node placement. Second, run-to-run variation
can occur, wherein subsequent executions of the same
application get vastly distinct allocations, and as a result
exhibit significant di�erences in performance and a lack of
reproducibility. Rank-to-rank variation can be mitigated
by ensuring that an application is not spread across a
wide set of performance classes, and run-to-run variation
can be addressed by ensuring that jobs with specific
characteristics (such as job size or memory requirements)
are consistently allocated to the same sets of nodes.

C. Determining Node Performance Classes
The use case in this paper focuses on a deterministic

source of variation and on rank-to-rank application
performance. We thus assume that we have a distribution
of nodes that can be binned into a few performance classes
in advance for a cluster, and that such a distribution
can be provided to a variation-aware scheduler. We derive
the performance classes as follows from our dataset with
single-node performance of MG and LULESH at 50W.
First, we calculate a combined score vector, tcombined, by
considering the performance of each of the n nodes in our
dataset as shown in Equation 2 (here, n = 2469). The
intuition behind this is to determine a relative ranking of
the nodes when considering the performance of multiple
benchmarks simultaneously.

The quartz cluster is organized in 42 racks, with 62
nodes per rack, with a total of 2604 nodes. As explained in
the previous subsection, we only have data for 2469 nodes.
For simplification and ease of understanding, we consider
only 39 full racks, or 2418 nodes. We randomly select
2418 values from the tcombined score vector from Equation
2, and use this subset for normalization in Equation 3.
Thus, j in Equation 3 is a randomly selected but unique
value from tcombined, and the range for j is from 1 to 2418
nodes. Note that we would not need such sampling if we
had a complete dataset across full set of racks and this
is for simplification purposes only. Equation 3 performs a
normalization to obtain tnorm, which is used to bin nodes
into five performance classes, as shown in Equation 4.

tcombinedi
=

tMGi

median(tMG1:n) + tLULESHi

median(tLULESH1:n)

2 (2)

tnormj
=

tcombinedj
≠ min(tcombinedj

)
max(tcombinedj

) ≠ min(tcombinedj
) (3)

p =

Y
____]

____[

1, if 0 Æ tnormi
Æ 0.10

2, if 0.10 < tnormi
Æ 0.25

3, if 0.25 < tnormi
Æ 0.40

4, if 0.40 < tnormi
Æ 0.60

5, if 0.60 < tnormi
Æ 1.0

(4)

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●
●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●
●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●
●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

LLNL-PRES-825680
82https://variorum.readthedocs.io/

Measuring impact of variation-aware scheduling

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• allocated(a,j) returns true if node a has been allocated to job j

• Pj is the set of performance classes of the nodes allocated to job j

• Figure of merit, fomj, is a measure of how widely the job is spread across different
performance classes

• For a job trace, we will look for number of jobs with low figure of merit

LLNL-PRES-825680
83https://variorum.readthedocs.io/

Variation-aware scheduling results in 2.4x reduction in rank-to-
rank variation in applications with Flux

TABLE I: Comparison of the three policies in terms of rank-to-rank variation. The table shows the number of jobs
with a certain value of figure of merit. Having many jobs with a zero or one figure of merit value is considered good.

Policy fom = 0 fom = 1 fom = 2 fom = 3 fom = 4
HighestID 66 54 47 27 6
LowestID 79 34 43 33 11

Variation-aware 184 7 8 1 0

0 1 2 3 4

Difference in Perf Class

Fr
eq

ue
nc

y
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Baseline: Highest ID First

0 1 2 3 4

Difference in Perf Class

Fr
eq

ue
nc

y
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Baseline: Lowest ID First

0 1 2 3

Difference in Perf Class

Fr
eq

ue
nc

y
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Variation Aware:
Most Efficient Node First

Fig. 8: Results of the variation-aware policy depicting significant reduction in performance variation

References

[1] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer,
and M. Schulz, “Flux: A next-generation resource management
framework for large HPC centers,” in Proceedings of the

10th International Workshop on Scheduling and Resource

Management for Parallel and Distributed Systems, September
2014.

[2] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A First Look at Performance under
a Hardware-Enforced Power Bound,” in IPDPS Workshops

(HPPAC). IEEE Computer Society, 2012, pp. 947–953.
[3] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree,

M. Schulz, D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda,
M. Kondo, and I. Miyoshi, “Analyzing and mitigating the
impact of manufacturing variability in power-constrained
supercomputing,” in Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’15, 2015.
[4] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple Linux

Utility for Resource Management,” in Job Scheduling Strategies

for Parallel Processing, ser. Lecture Notes in Computer Science,
vol. 2862, 2003, pp. 44–60.

[5] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer,
“Scalable I/O-aware job scheduling for burst bu�er enabled
HPC clusters,” in Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed

Computing (HPDC), 2016.
[6] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. Leung,

M. Egele, and A. K. Coskun, “Diagnosing performance
variations in hpc applications using machine learning,”
International Supercomputing Conference in High Performance

Computing (ISC-HPC), June 2017.
[7] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,

and V. De, “Parameter Variations and Impact on Circuits and
Microarchitecture,” in Proceedings of the 40th annual Design

Automation Conference, June 2003, pp. 338–342.
[8] L. R. Harriott, “Limits of lithography,” Proceedings of the IEEE,

vol. 89, no. 3, pp. 366–374, 2001.
[9] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A.

Antoniadis, A. P. Chandrakasan, and V. De, “Adaptive Body
Bias for Reducing Impacts of Die-to-die and Within-die
Parameter Variations on Microprocessor Frequency and
Leakage,” Solid-State Circuits, IEEE Journal of, vol. 37,
no. 11, pp. 1396–1402, Nov 2002.

[10] S. Jilla, “Minimizing The E�ects of Manufacturing Variation
During Physcial Layout,” Chip Design Magazine, 2013,
http://chipdesignmag.com/display.php?articleId=2437.

[11] S. B. Samaan, “The Impact of Device Parameter Variations on
the Frequency and Performance of VLSI Chips,” in Computer

Aided Design, 2004. ICCAD-2004. IEEE/ACM International

Conference on, Nov 2004, pp. 343–346.
[12] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob,

K. Bowman, J. Howard, J. Tschanz, V. Erraguntla,
N. Borkar, V. De, and S. Borkar, “Within-Die Variation-Aware
Dynamic-Voltage-Frequency-Scaling With Optimal Core
Allocation and Thread Hopping for the 80-Core TeraFLOPS
Processor,” Solid-State Circuits, IEEE Journal of, vol. 46,
no. 1, pp. 184–193, Jan 2011.

[13] S. Borkar, “Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation,” Micro, IEEE, vol. 25, no. 6, pp. 10–16, Nov 2005.

[14] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,”
in Computer Architecture, 2008. ISCA ’08. 35th International

Symposium on, June 2008, pp. 363–374.
[15] R. F. V. der Wijngaart and H. Jin, “NAS Parallel Benchmarks,”

Tech. Rep., July 2003.
[16] “Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics,”
https://computation.llnl.gov/casc/ShockHydro/.

[17] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and
C. Le, “RAPL: Memory Power Estimation and Capping,” in
Proceedings of the 16th ACM/IEEE international symposium

on Low power electronics and design, ser. ISLPED ’10, 2010,
pp. 189–194.

[18] Intel, “Intel-64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A and 3B: System Programming Guide,”
2011.

LLNL-PRES-825680
84https://variorum.readthedocs.io/

Facilities Recap: Mitigating Power Swings on Sierra/Lassen with in-
depth application analysis with Variorum

• Livermore Big Artificial Neural Network
toolkit (LBANN) -- infrastructure used for
deep learning in HPC

• LBANN utilizes all 4 GPUs per node
• Data shows 3 minute samples over 6

hours on Sierra with >200 KW swings
• Other workflows have similar trends with

power fluctuations at scale
• Mitigation of power fluctuations is

required to avoid electrical supply
disruption

• Variorum + Flux can dynamically
analyze applications and prevent future
fluctuations

Example: LBANN on Sierra at full scale has significant fluctuations impacting
LLNL’s electrical grid -- workload swings expected to worsen at exascale

LLNL-PRES-825680
85https://variorum.readthedocs.io/

Combining previous research into upcoming production efforts:
Flux + Variorum to monitor and manage power swings of workflows

• Flux Power Manager Module is
underway for El Capitan

• Utilizes the Variorum JSON interface to
develop a Flux system instance to
monitor and control power

• Algorithms for detecting and managing
power swings at scale are underway

• Example shows LBANN workflow’s Lenet
application being monitored

https://github.com/rountree/flux-power-mgr

https://github.com/rountree/flux-power-mgr

LLNL-PRES-825680
86https://variorum.readthedocs.io/

Interfacing Variorum with PowerStack Components

1

2

3

4

LLNL-PRES-825680
87https://variorum.readthedocs.io/

Enabling workflow power monitoring with the Kokkos and
Caliper ports of Variorum

• Utilizes the Variorum JSON interface to allow for
monitoring of integrated workflows

• Kokkos port has been merged into production
(with kokkos-tools) and provides per-rank output

• Caliper service is under development

• Both ports will be tested for scalability with
benchmarks and hardened in the upcoming
Variorum release

https://github.com/kokkos/kokkos-tools/tree/develop/profiling/variorum-
connector

https://github.com/kokkos/kokkos-tools/tree/develop/profiling/variorum-connector

LLNL-PRES-825680
88https://variorum.readthedocs.io/

Upcoming Variorum Next Steps

Development Efforts

§ Upcoming release: last quarter of 2021

§ Ports for AMD CPU (WIP), PowerAPI,
AMD GPUs

§ Advanced APIs

§ CI and testing for ECP on exascale
microarchitectures

Research Efforts

§ Harden Caliper service for Variorum

§ Workflow integration (MuMMI, E3SM,
LBANN)

§ MLPerf (GPU) characterization

§ SLURM + GEOPM + Variorum: Extend
it to use JSON

LLNL-PRES-825680
89https://variorum.readthedocs.io/

§ Both modules will be repeated on August 20 and August 23
— Introduction to Variorum
— Integrating Variorum with System Software and Tools

§ Submit your issues or feature request: https://github.com/llnl/variorum/issues

§ Documentation: https://variorum.readthedocs.io

§ Join our mailing list (low traffic): variorum-users@llnl.gov

§ Questions? Email us at variorum-maintainers@llnl.gov

Thank you for attending our tutorial series!

https://github.com/llnl/variorum/issues
https://variorum.readthedocs.io/
mailto:variorum-users@llnl.gov
mailto:variorum-maintainers@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

